Product Code Database
Example Keywords: software -table $88
   » » Wiki: Choquet Integral
Tag Wiki 'Choquet Integral'.
Tag

A Choquet integral is a or integral created by the French mathematician in 1953. It was initially used in statistical mechanics and ,

(1994). 079232840X, Kluwer Academic. 079232840X
but found its way into in the 1980s, where it is used as a way of measuring the expected of an uncertain event. It is applied specifically to membership functions and capacities. In imprecise probability theory, the Choquet integral is also used to calculate the lower expectation induced by a 2-monotone lower probability, or the upper expectation induced by a 2-alternating upper probability.

Using the Choquet integral to denote the expected utility of belief functions measured with capacities is a way to reconcile the and the .

(2025). 9780470611876
(2025). 9781420082661, CRC Press.

Multiobjective optimization problems seek solutions, but the Pareto set of such solutions can be extremely large, especially with multiple objectives. To manage this, optimization often focuses on a specific function, such as a , which typically results in solutions forming a of the feasible set. However, to capture non-convex solutions, alternative aggregation operators like the Choquet integral can be used.Lust, Thibaut & Rolland, Antoine. (2014). 2-additive Choquet Optimal Solutions in Multiobjective Optimization Problems. Communications in Computer and Information Science. 442. 256-265. 10.1007/978-3-319-08795-5_27.


Definition
The following notation is used:

  • S – a set.
  • \mathcal{F} – a collection of subsets of S.
  • f : S\to \mathbb{R} – a function.
  • \nu : \mathcal{F}\to \mathbb{R}^+ – a monotone .

Assume that f is measurable with respect to \mathcal{F}, that is

\forall x\in\mathbb{R}\colon \{s \in S \mid f (s) \geq x\}\in\mathcal{F}

Then the Choquet integral of f with respect to \nu is defined by:

(C)\int f d\nu := \int_{-\infty}^0 (\nu (\{s | f (s) \geq x\})-\nu(S))\, dx + \int^\infty_0 \nu (\{s | f (s) \geq x\})\, dx

where the integrals on the right-hand side are the usual (the integrands are integrable because they are monotone in x).


Properties
In general the Choquet integral does not satisfy additivity. More specifically, if \nu is not a probability measure, it may hold that
\int f \,d\nu + \int g \,d\nu \neq \int (f + g)\, d\nu.

for some functions f and g.

The Choquet integral does satisfy the following properties.


Monotonicity
If f\leq g then

(C)\int f\, d\nu \leq (C)\int g\, d\nu


Positive homogeneity
For all \lambda\ge 0 it holds that
(C)\int \lambda f \,d\nu = \lambda (C)\int f\, d\nu,


Comonotone additivity
If f,g : S \rightarrow \mathbb{R} are comonotone functions, that is, if for all s,s' \in S it holds that
(f(s) - f(s')) (g(s) - g(s')) \geq 0.
which can be thought of as f and g rising and falling together

then

(C)\int\, f d\nu + (C)\int g\, d\nu = (C)\int (f + g)\, d\nu.


Subadditivity
If \nu is 2-alternating, then
(C)\int\, f d\nu + (C)\int g\, d\nu \ge (C)\int (f + g)\, d\nu.


Superadditivity
If \nu is 2-monotone, then
(C)\int\, f d\nu + (C)\int g\, d\nu \le (C)\int (f + g)\, d\nu.


Alternative representation
Let G denote a cumulative distribution function such that G^{-1} is d H integrable. Then this following formula is often referred to as Choquet Integral:
\int_{-\infty}^\infty G^{-1}(\alpha) d H(\alpha) = -\int_{-\infty}^a H(G(x))dx+ \int_a^\infty \hat{H}(1-G(x)) dx,
where \hat{H}(x)=H(1)-H(1-x).
  • choose H(x):=x to get \int_0^1 G^{-1}(x)dx = EX,
  • choose H(x):=1_{\alpha,x} to get \int_0^1 G^{-1}(x)dH(x)= G^{-1}(\alpha)


Applications
The Choquet integral was applied in image processing, video processing and computer vision. In behavioral decision theory, and use the Choquet integral and related methods in their formulation of cumulative prospect theory.


See also


Notes

Further reading
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs